При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

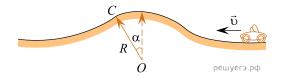
	А. ИмпульсБ. СилаВ. Мощность	1) скалярная величина 2) векторная величина	
1) А2 Б2 В1	,	3) A1 Б2 B2 Б1 B2	4) A1 Б2 В1

2. В момент времени $t_0=0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1=4t+1,6t^2$ и $x_2=-12t+2,1t^2$ (x_1,x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

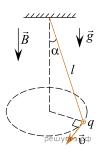
- 1) 10 c 2) 16 c 3) 24 c 4) 32 c 5) 44 c
- **3.** Материальная точка равномерно движется по окружности радиусом R=37 см. Если в течение промежутка времени $\Delta t=23$ с материальная точка совершает N=40 оборотов, то модуль её скорости υ равен:
 - 1) 2 m/c 2) 4 m/c 3) 7 m/c 4) 9 m/c 5) 10 m/c
- **4.** На поверхности Земли на тело действует сила тяготения, модуль которой $F_1=144~\rm H.$ На это тело, когда оно находится на расстоянии $r=3R_3~(R_3~--$ радиус Земли) от центра Земли, действует сила тяготения, модуль которой F_2 равен:
 - 1) 9 H 2) 16 H 3) 24 H 4) 36 H 5) 48 H
- **5.** Камень, брошенный горизонтально с некоторой высоты, упал на поверхность Земли через промежуток времени $\Delta t=2$ с от момента броска. Если модуль начальной скорости $\upsilon_0=15$ м/с, то модуль его начальной скорости υ в момент падения был равен:
 - 1) 20 m/c 2) 25 m/c 3) 30 m/c 4) 32 m/c 5) 35 m/c
- **6.** В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

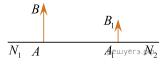
1) 1 2) 2 3) 3 4) 4 5) 5

7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Температура, К	Давление, кПа	Объем, л
1	280	233	10
2	320	266	10
3	340	283	10
4	360	299	10
5	380	316	10

Такая закономерность характерна для процесса:

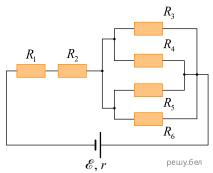

- 1) циклического 2) изохорного 3) адиабатного 4) изобарного 5) изотермического
- **8.** При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300$ K до $T_2 = 420$ K. Если начальное давление газа $p_1 = 150$ кПа, то конечное давление p_2 газа равно:
 - 1) 180 кПа 2) 190 кПа 3) 200 кПа 4) 210 кПа 5) 220 кПа
- **9.** За некоторый промежуток времени температура криптона, находящегося в герметично закрытом сосуде, изменилась на $\Delta t = 100$ °C. Если изменение внутренней энергии газа $\Delta U = 15$ кДж, то количество вещества у криптона равно:
 - 1) 6,0 моль 2) 9,0 моль 3) 12 моль 4) 18 моль 5) 27 моль
 - 10. На рисунке приведено условное обозначение:


- 1) колебательного контура 2) конденсатора 3) гальванического элемента 4) катушки индуктивности
 - 5) резистора
- 11. Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l=90 м, состоящую из двух участков, за промежуток времени $\Delta t=13$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени $\Delta t_1 = 8,0$ с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{\rm M}{\rm C}$.
- 12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой m=30 кг, площадь основания которого S=0,070 м 2 . Если давление, оказываемое чемоданом на пол, p=3,0 кПа, то модуль ускорения a лифта равен ... $\frac{\mathcal{I}_{N}^{M}}{c^2}$.
- **13.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=12 м. Если коэффициент трения $\mu=0,48$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- **14.** Автомобиль движется по дороге со скоростью, модуль которой $\upsilon=86,4$ км/ч. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=349 м. Направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^\circ$. Если модуль силы давления автомобиля на дорогу F=6,16 кH, то масса m автомобиля равна ... кг.

- **15.** Зависимость координаты x пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t) = A\cos(\omega t + \varphi_0)$, где $\omega = \frac{5\pi}{3} \frac{\mathrm{pag}}{\mathrm{c}}, \; \varphi_0 = \frac{\pi}{3} \; \mathrm{pag}$. Если полная механическая энергия маятника $E = 16 \; \mathrm{MДж}$, то в момент времени $t = 1,2 \; \mathrm{c}$ кинетическая энергия E_{κ} маятника равна ... мДж.
- **16.** Микроволновая печь потребляет электрическую мощность P=1,5 кВт. Если коэффициент полезного действия печи $\eta=48\%$, то вода $(c=4,2~\frac{\kappa \square \kappa}{\kappa \Gamma \cdot {}^{\circ}C})$ массой m=0,12 кг нагреется от температуры $t_1=10~{}^{\circ}C$ до температуры $t_2=100~{}^{\circ}C$ за промежуток времени $\Delta \tau$, равный ... ${\bf c}$.
- **17.** Температура нагревателя идеального теплового двигателя на $\Delta t = 200~^{\circ}\mathrm{C}$ больше температуры холодильника. Если температура нагревателя $t = 300~^{\circ}\mathrm{C}$, то термический коэффициент полезного действия η двигателя равен ... %.
- **18.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,73 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha=60^\circ$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние I, равное ... дм.
- 19. Аккумулятор, ЭДС которого $\varepsilon=1,5$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=36,6 г. Если на нагревание проводника расходуется $\alpha=60\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\varDelta T_{\rm max}$ проводника за промежуток времени $\varDelta t=1$ мин равно ... K.
- **20.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора с электроёмкостью C=4,0 мк Φ и катушки индуктивности, происходят свободные электромагнитные колебания с периодом T. Если конденсатор был заряжен до напряжения $U_0=8,0$ В и подключен к катушке индуктивности, то энергия $W_{\rm C}$ электрического поля конденсатора в момент времени t=T/12 от момента начала колебаний равна ... мкДж.
- **21.** В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=5,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,40 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=20$ см/с масса шарика $\upsilon=20$ мг. Если синус угла отклонения нити от вертикали $\upsilon=0,10$, то чему равна длина $\upsilon=1$ нити? Ответ приведите в сантиметрах.

- **22.** На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=400$ нм. Если максимум второго порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное
- 23. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковы-

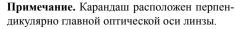


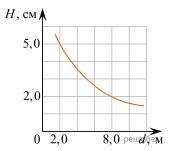
ми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов


$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4~\frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

